Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Nobuo Okabe,* Emi Yamamoto and Muranishi Yasunori

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail:
okabe@phar.kindai.ac.jp

## Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.043$
$w R$ factor $=0.152$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## trans-Bis(3-hydroxy-2-phenyl-4H-1-benzo-pyran-4-onato)bis(pyridine)copper(II)

The title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, has a distorted octahedral coordination in which the $\mathrm{Cu}^{\text {II }}$ atom lies on a center of symmetry. The bidentate ligands lie in trans positions with respect to one another, forming the equatorial plane, with two pyridyl ligands occupying the axial positions.

## Comment

Flavonol (3-hydroxyflavone) is the model compound of quercetin ( $3^{\prime}-4^{\prime}, 5,7$-tetrahydroxyflavonol), which is a component of rutin and which is oxygenated to the corresponding phenolic carboxylic acid ester catalysed by the coppercontaining quercetin 2,3-dioxygenase (Fusetti et al., 2002). The copper complex of flavonol also degraded to the corresponding depside, catalysed by $\mathrm{Cu}^{\mathrm{I}}$ and $\mathrm{Cu}^{\mathrm{II}}$ flavonolate complexes (Balogh-Hergovich et al., 1991). The molecular structures of a $\mathrm{Cu}^{\mathrm{I}}$ complex (Speier et al., 1990) and a $\mathrm{Cu}^{\mathrm{II}}$ complex (Balogh-Hergovich et al., 1991) of flavonol have been determined to understand the coordination modes. In the case of the $\mathrm{Cu}^{\mathrm{I}}$ complex, one flavonol ligand coordinates to the central $\mathrm{Cu}^{\mathrm{I}}$ by its 3-hydroxy and 4-carbonyl groups, together with two triphenylphosphines, to form a distorted tetrahedron (Speier et al., 1990). In the case of the $\mathrm{Cu}^{\wedge} \mathrm{II}^{\wedge}$ complex, two flavonolate ligands are coordinated to $\mathrm{Cu}^{\mathrm{II}}$ by their 3-hydroxy and 4-carbonyl groups to form a square-planar geometry (Balogh-Hergovich et al., 1991). In the modeling of the substrate into the active site of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus, the Cu atom is surrounded by six coordinated atoms (Fusetti et al., 2002) and the 3-hydroxy and 4-carbonyl groups of the quercetin molecule are ligated to the Cu atom. In this study, we report the structure of a copper complex of flavonol, (I).


The molecular structure of (I) is shown in Fig. 1. The $\mathrm{Cu}^{\mathrm{II}}$ atom has a distorted octahedral coordination geometry, in the trans form, defined by two O atoms of the 3-hydroxy and 4-carbonyl groups of two bidentate ligands in the equatorial plane, and two axial N atoms of two pyridyl ligands. The Cu
atom lies on a center of symmetry. The geometric parameters are listed in Table 1. The 3-hydroxyl group is deprotonated, and the $\mathrm{C} 1-\mathrm{O} 1$ bond is shorter than the other $\mathrm{C}-\mathrm{O}$ single bonds. The short $\mathrm{C} 2-\mathrm{O} 2$ bond distance reflects the ketonic form of the 4-carbonyl group. The coordination bond distance in the axial direction, $\mathrm{Cu} 1-\mathrm{N} 1$, is longer than those in the equatorial plane. This is commonly observed in the distorted octahedral coordination geometry of the $\mathrm{Cu}^{\mathrm{II}}$ complexes and is explained by a Jahn-Teller effect. The flavonol moiety is almost planar $\left[\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15=-8.0(5)^{\circ}\right]$, and atoms $\mathrm{Cu} 1, \mathrm{O} 1, \mathrm{C} 1, \mathrm{C} 2$ and O 2 form a five-membered ring.

## Experimental

Yellow prismatic crystals of (I) were obtained by slow evaporation of a mixture of flavonol and $\mathrm{Cu}(\mathrm{OH})_{2}$ in pyridine solution (molar ratio 2: 1).

## Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.460 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=13.9-14.9^{\circ} \\
& \mu=0.74 \mathrm{~mm}^{-1} \\
& T=296.2 \mathrm{~K} \\
& \text { Prism, yellow } \\
& 0.30 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=696.19$
Triclinic, $P \overline{1}$
$a=8.539(2) \AA$
$b=10.029$ (2) $\AA$
$c=11.098$ (2) $\AA$
$\alpha=114.70(1)^{\circ}$
$\beta=97.18$ (2) ${ }^{\circ}$
$\gamma=107.00(1)^{\circ}$ 。
$V=791.6(3) \AA^{3}$

## Data collection

Rigaku AFC-5R diffractometer

## $\omega-2 \theta$ scans

Absorption correction: $\psi$ scan
(North et al., 1968)
$T_{\text {min }}=0.799, T_{\text {max }}=0.859$
3834 measured reflections
3632 independent reflections
2303 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.018 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-11 \rightarrow 10 \\
& k=0 \rightarrow 13 \\
& l=-14 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \quad \text { intensity decay: } 0.5 \%
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.152$
$S=0.95$
3632 reflections
223 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.001$
$\Delta \rho_{\text {max }}=0.56 \mathrm{e}^{\mathrm{max}} \AA^{-3}$
$\Delta \rho_{\max }=0.56 \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{Cu} 1-\mathrm{O} 1$ | $1.931(2)$ | $\mathrm{Cu} 1-\mathrm{N} 1$ | $2.495(4)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | $1.931(2)$ | $\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | $2.495(4)$ |
| $\mathrm{Cu} 1-\mathrm{O} 2$ | $2.039(2)$ | $\mathrm{O} 1-\mathrm{C} 1$ | $1.312(3)$ |
| $\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $2.039(2)$ | $\mathrm{O} 2-\mathrm{C} 2$ | $1.255(3)$ |
|  |  |  |  |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$ | 180.0 | $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$ | $90.1(1)$ |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$ | $83.29(9)$ | $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | $89.9(1)$ |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $96.71(9)$ | $\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$ | $89.9(1)$ |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$ | $91.3(1)$ | $\mathrm{O} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | $90.1(1)$ |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | $88.7(1)$ | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | 180.0 |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2$ | $96.71(9)$ | $\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1$ | $112.0(2)$ |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $83.29(9)$ | $\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 2$ | $109.4(2)$ |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$ | $88.7(1)$ | $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 16$ | $120.9(3)$ |
| $\mathrm{O} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$ | $91.3(1)$ | $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 20$ | $120.5(3)$ |
| $\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | 180.0 |  |  |

Symmetry code: (i) $-x,-y, 1-z$.


Figure 1
ORTEPII (Johnson, 1976) drawing of (I), with the atomic numbering scheme. Ellipsoids for non-H atoms are drawn at the $50 \%$ probability level. Atoms marked with an asterisk are at the symmetry position ( $-x$, $-y, 1-z$ ).

After their location in a difference map, all H atoms were placed at calculated positions $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$ and refined as riding.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation and Rigaku, 2000); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation and Rigaku, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

## References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Balogh-Hergovich, E., Speier, G. \& Argay, G. (1991). J. Chem. Soc. Chem. Coтmии. pp. 551-552.
Fusetti, F., Schröter, K. H., Steiner, R. A., van Noort, P. I., Pijning, T., Rozeboom, H. R., Kalk, K. H., Egmond, M. R. \& Dijkstra, B. W. (2002). Structure, 10, 259-268.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation \& Rigaku (2000). MSC/AFC Diffractometer Control Software and TEXSAN (Version 1.11). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Speier, G., Fülöp, V. \& Párkányi, L. (1990). J. Chem. Soc. Chem. Commun. pp. 512-513.

